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neither created nor destroyed by the advection; it can only be
transported from one place to another through a continuousA general method for building multidimensional shape preserving

advection schemes using flux limiters is presented. The method part of the intervening space. The flux form is a conservation
works for advected passive scalars in either compressible or incom- law in the sense of theoretical physics. One corollary is that
pressible flow and on arbitrary grids. With a minor modification it the total amount of the advected substance, erqdV, is not
can be applied to the equation for fluid density. Schemes using the

changed by the advection (given suitable boundary conditions).simplest form of the flux limiter can cause distortion of the advected
The advective form states that the mixing ratio does notprofile, particularly sideways spreading, depending on the orienta-

tion of the flow relative to the grid. This is partly because the change following a fluid parcel. This implies that extrema in
simple limiter is too restrictive. However, some straightforward the mixing ratio distribution are not amplified. For brevity, this
refinements lead to a shape-preserving scheme that gives satisfac- will be referred to as the shape preservation property. Two
tory results, with negligible grid-flow angle-dependent distor-

corollaries of this are (i) that a spatially homogeneous mixingtion. Q 1996 Academic Press, Inc.

ratio remains spatially homogeneous and (ii) that if the mixing
ratio is initially positive everywhere then no negative mixing
ratios are produced.1. INTRODUCTION

For many applications both the conservation property and the
The advection of a substance with mass mixing ratio q by shape preservation property are highly desirable in a numerical

a fluid of density r and velocity v can be represented either by advection scheme. In particular, the shape preservation property
the flux form of the advection equation, goes a long way towards ensuring that the numerical method

does not generate any spurious oscillations or unphysical nega-
tive mixing ratios in the advected field. (However, it does not­

­t
(rq) 1 = · (rvq) 5 0, (1)

preclude the generation of spurious changes of gradient, which
is sometimes described as ‘‘staircasing.’’)

Conservative, shape preserving schemes for one-dimensionalor by the advective form,
problems have been known for some time. One approach for
constructing such schemes, called ‘‘flux-corrected transport’’Dq

Dt
5 0, (2) (FCT), e.g., [2–4], involves two stages. A first-order upwind

scheme, which is shape preserving but diffusive, is used to
advect the field. Then an antidiffusive correction is applied. Bywhere D/Dt means the material derivative;
carefully constraining, or ‘‘limiting,’’ the antidiffusive fluxes
the scheme as a whole can be made to retain the shape preserva-
tion property. A second, conceptually similar, approach is toD

Dt
; ­

­t
1 v · =. (3)

use a single stage in which the full fluxes are carefully con-
strained using a ‘‘flux limiter,’’ e.g., [8, 13, 15]. (In the literature

The two forms are equivalent when the mass of the fluid is there is some interchanging of the terminology, but in this paper
conserved; (1) can be obtained from (2) and vice versa using ‘‘FCT’’ will refer only to the two-stage approach and a ‘‘flux-

limited scheme’’ will refer only to the single-stage approach.)
Multidimensional advection problems can be solved by time­r

­t
1 = · (rv) 5 0. (4)

splitting, using a one-dimensional scheme in each coordinate
direction. However, this may give unsatisfactory results, partic-
ularly for flows with strong deformation [5, 6, 10, 11]. So forBut the two forms highlight different properties of the physical

process of advection. many applications genuinely multidimensional shape preserv-
ing schemes are preferable. Moreover, many grids, includingThe flux form implies that the advected substance can be
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unstructured grids, do not lend themselves to time splitting, face, ci is the length of the ith face, Ak is the area of the kth
grid box, and Dt is the time step. (In three dimensions ciso for these grids genuinely multidimensional schemes must

be used. and Ak are the face area and box volume, respectively. In one
dimension ci is set to 1 and Ak is the length of the grid box.)The two-stage FCT approach has been extended to more

than one dimension [16] and has been applied successfully to Note that each face has two Courant numbers, one with respect
to the box on each side, and, in general, these may be differentsome problems in geophysical fluid dynamics, e.g., [1, 11, 12].

Some progress has been made in extending the single-stage if the box areas are different. In fact, for the regular grid used
in this paper, ci and Ak are constants. However, each face hasflux-limiter approach to more than one dimension [9]. However,

the simplest multidimensional flux-limited schemes, although only one value of r̂. The method for choosing the values of r̂
has not yet been specified. Clearly, (5) conserves the total massshape-preserving in the sense defined above, can distort the

advected field in a way that depends on the orientation of the of the fluid, ok rk Ak , irrespective of how the values of r̂ are
chosen. (To see this, multiply (5) by Ak and sum over k, andflow relative to the grid. Adding certain transverse gradient

terms after applying the flux limiter reduces this problem, al- use the fact that each face is counted once as an inflow face and
once as an outflow face so that the two contributions cancel.)though the method becomes complicated for a spatially varying

flow field. Similarly, (1) can be discretized to give
In this paper a general prescription is given for building

shape-preserving schemes using flux limiters in several dimen- sm11
k 5 sm

k 1 O
in

ciŝi 2 O
out

cjŝj , (7)
sions and on arbitrary grids (Section 4). The method applies
equally well for an advected scalar in either compressible or
incompressible flow. Furthermore, with a minor modification where s 5 rq. Each face has only one value of ŝ, and therefore
it can be applied to the fluid density itself (Section 6). When (7) conserves the total mass of tracer, ok sk Ak , irrespective of
used on a regular square grid, one of the simplest possible how the values of ŝ are chosen.
limiters turns out to be too restrictive and leads to a flow- If qk is defined to be the mass-weighted box average tracer
grid angle-dependent distortion similar to that described in [9]. mixing ratio then sk 5 rkqk . Also, ŝ can be related to a box
However, the limiter can be refined by taking into account face mixing ratio by defining ŝi 5 r̂iq̂i . Then (7) becomes
information from upstream diagonal neighbours and by using
the available information to relax the limiter at the outflow

rm11
k qm11

k 5 rm
k qm

k 1 O
in

cir̂iq̂i 2 O
out

cj r̂j q̂j . (8)
faces (Section 4.2). The resulting scheme performs well for a
range of grid–flow angles, giving minimal distortion of the
advected profile. The results are summarized in Section 7. Dividing through by (5) gives

2. THE BASIC ADVECTION SCHEME

qm11
k 5

qm
k 1 oin c̃iq̂i 2 oout c̃j q̂j

1 1 oin c̃i 2 oout ĉj

, (9)
A flux-limited advection scheme consists of a basic advection

scheme plus the flux limiter. Usually, a more accurate basic
scheme leads to a more accurate flux-limited scheme. This where
section describes the discrete update equations for density and
mass mixing ratio and the basic two-dimensional advection

c̃i 5 ci r̂/rm
k (10)scheme used throughout this paper.

The discrete version of the mass continuity equation, (4), is
is a modified Courant number. Again, each face has two Courant
numbers, one with respect to the box on each side, and inrm11

k 5 rm
k 1 O

in

ci r̂i 2 O
out

cj r̂j , (5)
general these may be different, even on a uniform grid. A
special case is that of a fluid of constant density for which

where oin means a sum over the inflow faces of the kth grid c̃i 5 ci . For such a fluid = ? v must vanish; the discrete analogue
box and oout means a sum over the outflow faces, rm

k is the of this condition is that the denominator in (9) should be identi-
average density in the kth grid box at time step m, and a cally equal to 1. Equation (9) is used to update the mixing ratio.
circumflex indicates a value at the face of a grid box. ci is a For most of this paper it is assumed that the mass fluxes
Courant number for the flow normal to the ith face of the box: r̂v(n) are known and the task is to choose the values of q̂ that

give an accurate shape-preserving scheme. In Section 6 we
return to the problem of choosing r̂ given the fluid velocity.ci 5

uv(n)
i uci Dt

Ak
. (6)

In a more general problem the fluid velocity is given and the
task is first to choose values of r̂, allowing mass fluxes to be
calculated, and then to choose q̂.Here, v(n)

i is the normal component of the velocity at the ith
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as the normal Courant number (cx in (11) through (17)). Von
Neumann stability analysis for this scheme [9] shows that it is
stable for ucxu 1 ucyu , 1.

This upwind biased foward in time basic scheme was chosen
in preference to, say, a high order centred in space and centred
(leapfrog) in time scheme for two reasons. First, centred differ-
ence schemes have poor phase propagation characteristics lead-
ing to the production of (sometimes many) spurious extrema.
Although the flux-limiter can suppress the production of spuri-
ous extrema, spurious changes of gradient (‘‘staircasing’’) can
still arise. Second, when the basic scheme is centred in time
the flux limiting procedure must, nevertheless, be forward in
time, using values at time step m 2 1 to constrain the fluxes
used to calculate the values at m 1 1. This necessitates a more
complicated hybrid forward/centred time stepping. On top of
this, the inclusion of source terms on the right of (1) or (2)
then becomes problematical, because the values at time step m

FIG. 1. Schematic showing the stencil of grid boxes used by the basic have ‘‘seen’’ more of the source than the values at time step
UTOPIA scheme to calculate the interfacial mixing ratio at the face indicated

m 2 1.by the heavy line when the flow at that face is in the direction shown by
For each of the schemes described in this paper a set of fourthe arrow.

very simple test cases is used to compare their basic properties.
A doubly periodic square domain is covered by a regular grid
of 31 3 31 boxes with Dx 5 Dy. Two different initial conditions

The basic advection scheme used throughout this paper is
are used: a Gaussian of standard deviation 3Dx and a square

the UTOPIA scheme [9], (see also [11]), for a square grid,
step profile of width 15 Dx (Fig. 2). The grid and the Gaussian

Dx 5 Dy. It is based on the idea of two-dimensional cubic
profile are identical to those used in [9], so that some of the

upwind interpolation to a parcel’s departure point. Reexpressed
results presented here can be compard directly with theirs. In

in terms of the flux form of the advection equation, an inter-
the first two test cases these profiles are advected once around

facial value, q̂, for the vertical face between box (k 2 1, l)
the domain (62 steps), left to right, by a constant velocity with

and box (k, l), for cx . 0 and cy . 0, as shown in Fig. 1 is
Courant numbers cx 5 0.5, cy 5 0 in the x- and y-directions,

given by
respectively. In the third and fourth test cases the same two
profiles are advected once around the domain (124 steps), diago-
nally, botton left to top right, by a constant wind with Courantq̂ 5 LIN 2

ucxu
2

GRADN 2
(1 2 c2

x)

6
CURVN 2

ucyu
2

GRADT
numbers cx 5 0.25, cy 5 0.25.

Figure 3 shows the results of the four test cases for the basic
2

ucyu
4

((1 2 ucyu) CURVT 1 (1 2 ucxu) TWIST) advection scheme with no flux limiter. The scheme performs

(11)

quite well on both the smooth Gaussian and the sharp square
profile, although there is some smoothing of the sharp edges

where of the square profile. However, there are undershoots in all
cases and overshoots in the square profile cases.

LIN 5 (qk21,l 1 qk,l)/2, (12)

GRADN 5 qk,l 2 qk21,l , (13)

CURVN 5 qk,l 2 2qk21,l 1 qk22,l , (14)

GRADT 5 qk21,l 2 qk21,l21 , (15)

CURVT 5 qk21,l11 2 2qk21,l 1 qk21,l21 , (16)

TWIST 5 qk,l 2 qk21,l 2 qk,l21 1 qk21,l21 . (17)

The stencil is rotated or reflected in an obvious way for flows
at other angles (cx , 0, cy , 0, or both) and for the horizontal
faces. Note that, for this particular basic scheme, q̂ depends on FIG. 2. Initial conditions for simple advection tests. The contour interval

is 0.1: Left, circular Gaussian profile; right, square step profile.the tangential Courant number (cy in (11) through (17)), as well
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box. (If a grid box has several outflow faces then there are
many ways to satisfy the total outflow bounds by imposing
individual outflow bounds at the different outflow faces. In this
paper a simple procedure is chosen, that of allowing the same
range of mixing ratio, [ q̂(out)

min , q̂ (out)
max ], at each outflow face of the

box. More sophisticated choices are possible but have not
been investigated.)

In order to calculate what the total outflow bounds must be,
the possible range of total inflow must be known in advance.
Therefore, the first step is to impose reasonably wide initial
‘‘inflow’’ bounds, [( q̂ (in)

i )min, ( q̂ (in)
i )max] at each face, i. E.g., for

the face marked L in Fig. 4,

(i) define the inflow bounds by

( q̂(in)
L )min 5 min(qm

k21, qm
k ), (18)

( q̂(in)
L )max 5 max(qm

k21, qm
k ); (19)

(ii) adjust the interfacial values given by the basic schemeFIG. 3. Results of the four simple advection tests using the UTOPIA
to lie within these bounds:scheme without a flux limiter. The contour interval is 0.1. Contours less than

or equal to 0 and contours greater than or equal to 1 are dashed. Upper left:
Gaussian initial profile, flow left to right. Upper right: square initial profile, q̂9L 5 min( q̂(basic)

L , ( q̂(in)
L )max), (20)

flow left to right. Lower left: Gaussian initial profile, diagonal flow. Lower
right: square initial profile, diagonal flow.

q̂0L 5 max( q̂9L, ( q̂(in)
L )min). (21)

In order to guarantee that qm11
k will lie within the range

3. ONE-DIMENSIONAL FLUX LIMITER [(qm11
k )min, (qm11

k )max] it will turn out to be necessary that

First the one-dimensional ‘‘universal limiter’’ [8] is reviewed
(qm11

k )min # ( q̂(in)
L )min, (22)

here, using a notation that makes clear its later extension to
higher dimensions. Then it is shown that applying a one-dimen- (qm11

k )max $ ( q̂(in)
L )max. (23)

sional limiter separately in each coordinate direction gives un-
satisfactory results, both allowing undershoots and overshoots A suitable choice is to
and leading to distortion of the advected profile.

Consider part of a one-dimensional domain shown in Fig. (iii) define (qm11
k )min and (qm11

k )max by
4, with the flow from left to right. Suppose a basic scheme has
already been used to calculate interfacial mixing ratios, q̂ (basic)

L (qm11
k )min 5 (q̂(in)

L )min, (24)
and q̂ (basic)

R , at the faces marked L and R. The essence of the
(qm11

k )max 5 ( q̂(in)
L )max. (25)flux-limiting procedure is to ensure that the updated mixing

ratio in gridbox k, qm11
k , lies within a certain range, [(qm11

k )min,
Note that this gives a suitable discrete analogue of the shape(qm11

k )max], by placing bounds on the total outflow from that
preservation property: (qm11

k )min and (qm11
k )max are the minimum

and maximum mixing ratios in an upstream biased neighbour-
hood of box k.

Now suppose it could be guaranteed that the mixing ratio at
the outflow face of box k, face R, will be greater than or equal
to ( q̂(out)

k )min. (Since ( q̂(out))min will later turn out to be the same
for all outflow faces of box k, it has subscript k rather than R.)
It would then follow that

qm11
k #

q m
k 1 c̃L( q̂(in)

L )max 2 c̃R( q̂(out)
k )min

1 1 c̃L 2 c̃R
, (26)

FIG. 4. Schematic showing grid boxes and faces involved in applying the
one-dimensional universal limiter. (provided that 1 1 c̃L 2 c̃R . 0; in fact a stronger condition
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will be required later). So q m11
k will be less than or equal to

(qm11
k )max if ( q̂(out)

k )min is defined by

(qm11
k )max 5

qm
k 1 c̃L( q̂(in)

L )max 2 c̃R( q̂(out)
k )min

1 1 c̃L 2 c̃R
, (27)

i.e.,

( q̂(out)
k )min 5

qm
k 1 c̃L( q̂(in)

L )max 2 (qm11
k )max (1 1 c̃L 2 c̃R)

c̃R
. (28)

Similarly, qm11
k will be greater than or equal to (qm11

k )min provided
that the mixing ratio at face R is less than or equal to
( q̂(out)

k )max, defined by

( q̂(out)
k )max 5

qm
k 1 c̃L( q̂(in)

L )min 2 (qm11
k )min (1 1 c̃L 2 c̃R)

c̃R
. (29)

FIG. 5. As in Fig. 3, but for the UTOPIA scheme with the one-dimensional
The final steps in the algorithm are, therefore, universal limiter applied separately in each coordinate direction.

(iv) calculate the outflow bounds for each face according to
(28) and (29), and

than or equal to zero. The flux limiter will constrain the one-(v) adjust the interfacial mixing ratio at each face to lie
dimensional x-advection to decrease the mixing ratio by nowithin the corresponding outflow bounds, e.g.,
more than d, and the same is true for the y-advection. There
is nothing to prevent the combined x-advection and y-advection

q̂-R 5 min( q̂0R, ( q̂(out)
k )max). (30)

from decreasing the mixing ratio by as much as 2d and so
producing negatives. To overcome the problem a fully multidi-q̂R 5 max( q̂-R , ( q̂(out)

k )min). (31)
mensional limiter is required; this is developed in the follow-
ing section.

The resulting values of q̂ are substituted in (9) to step the
mixing ratio.

4. MULTIDIMENSIONAL FLUX LIMITERS
In order for the algorithm to work, two conditions must hold.

First, ( q̂(out)
k )min must be less than or equal to ( q̂(out)

k )max. This will 4.1. General Formulation
hold, provided that (22) and (23) hold and provided that the

The construction of the one-dimensional universal limiterCourant number condition c̃R , 1 holds. Second, two sets of
in Section 3 suggests the following generalization to higherbounds are imposed at each face, the inflow bounds and the
dimensions (Fig. 6). Note that this procedure does not dependoutflow bounds, and these bounds must not be mutually exclu-
on the grid used, or on the particular basic scheme used, sosive. In fact there always exists at least one value that satisfies
long as it is forward in time. Suppose that the basic schemeboth sets of bounds, namely the mixing ratio in the box upwind
has been used to calculate a mixing ratio, q̂(basic)

i , for each face i.of the face in question, corresponding to a first-order upwind
As for the one-dimensional limiter, the first step is to imposescheme.

reasonably wide initial inflow bounds, [( q̂(in)
i )min, ( q̂(in)

i )max] atFigure 5 shows the results of using the basic UTOPIA scheme
each face, i. E.g., for the face marked I1 in Fig. 6.combined with this one-dimensional limiter applied separately

in each coordinate direction. For flow parallel to the grid this (i) define the inflow bounds by
approach works well because each two-dimensional test effec-
tively reduces to a set of one-dimensional tests, while the ( q̂(in)

I1 )min 5 min(qup
min, qm

k ), (32)
scheme reduces to the one-dimensional QUICKEST scheme

( q̂(in)
I1 )max 5 max(qup

max, qm
k ), (33)[7] plus the one-dimensional universal limiter. However, for

flow at an angle to the grid there is gross distortion of the
where qup

min is some minimum mixing ratio in an upstream neigh-advected profile and there are overshoots and undershoots.
bourhood of face I1, and qup

max is the corresponding maximumThe reason the scheme allows spurious extrema to arise can
mixing ratio. The simplest possible choice is qup

min 5 qup
max 5be illustrated as follows. Suppose a grid box contains a small

mixing ratio, d, and that neighbouring values are all greater qup, although we shall find in Section 4.2 that improved results
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neighbourhood of box k, giving a suitable discrete analogue of
the shape preservation property.

Now suppose it could be guaranteed that the mixing ratio at
every outflow face of box k will be greater than or equal to
(q̂(out)

k )min. It would then follow that

qm11
k #

qm
k 1 oin c̃i(q̂(in)

i )max 2 oout c̃j(q̂(out)
k )min

1 1 oin c̃i 2 oout c̃j

(40)

(provided that 1 1 oin c̃i 2 oout c̃j . 0). So qm11
k will be less

than or equal to (qm11
k )max if (q̂(out)

k )min is defined by

(qm11
k )max 5

qm
k 1 oin c̃i(q̂(in)

i )max 2 oout c̃j(q̂(out)
k )min

1 1 oin c̃i 2 oout c̃j

, (41)

i.e.,
FIG. 6. Schematic showing some of the grid boxes and faces involved in

applying the multidimensional limiter. The arrows indicate the direction of the
normal component of the wind at the faces of box k. Faces I1 and I2 are inflow

(q̂(out)
k )min 5

qm
k 1 oin c̃i(q̂(in)

i )max 2 (qm11
k )max(1 1 oin c̃i 2 oout c̃j)

oout c̃j

.faces to box k. Faces O1, O2, and O3 are outflow faces of box k; qk is the
mixing ratio in box k; and qup is the mixing ratio in one of the upwind boxes.

(42)

Similarly, qm11
k will be greater than or equal to (qm11

k )min, provided
can be obtained by taking into account other boxes in the that the mixing ratio at every outflow face of box k is less than
upstream neighbourhood. or equal to (q̂(out)

k )max, defined by
(ii) Adjust the interfacial values given by the basic scheme

to lie within these bounds:

(q̂(out)
k )max 5

qm
k 1 oin c̃i(q̂(in)

i )min 2 (qm11
k )min(1 1 oin c̃i 2 oout c̃j)

oout c̃j

.q̂9I1 5 min( q̂(basic)
I1 , ( q̂(in)

I1 )max), (34)

(43)q̂0I1 5 max( q̂9
I1, ( q̂(in)

I1 )min). (35)

The final steps in the algorithm are, therefore,The next step is to specify what range of values,
[(qm11

k )min, (qm11
k )max], will be allowed in box k at time step (iv) calculate the outflow bounds for each face according to

m 1 1. In order to guarantee that qm11
k will lie within the range (42) and (43), and

[(qm11
k )min, (qm11

k )max] it will turn out to be necessary that (v) adjust the interfacial mixing ratio at each face to lie
within the corresponding outflow bounds, e.g., for the face

(qm11
k )min # (q̂(in)

i )min, (36) marked O1 in Fig. 6,

(qm11
k )max $ (q̂(in)

i )max. (37)
q̂-O1 5 min(q̂0O1, (q̂(out)

k )max), (44)
for every inflow face, i, of box k. A suitable choice is to

q̂O1 5 max(q̂-O1, (q̂(out)
k )min). (45)

(iii) define (qm11
k )min and (qm11

k )max by

Finally the values of q̂ are inserted in Eq. (9) in order to update(qm11
k )min 5 min

i
h(q̂(in)

i )minj, (38)
the grid box mixing ratios.

The inequalities (36) and (37), together with the Courant(qm11
k )max 5 max

i
h(q̂(in)

i )maxj, (39)
number condition oout c̃j , 1, ensure that (q̂(out)

k )min is less than
or equal to (q̂(out)

k )max. Also, there always exists at least one value
that satisfies both the inflow bounds and the outflow boundswhere i runs over the inflow faces of box k. If box k has no

inflow faces then (qm11
k )min and (qm11

k )max are set equal to qm
k . at any given face, namely the mixing ratio in the box upwind

of that face, corresponding to a first-order upwind scheme.As for the one-dimensional limiter, (qm11
k )min and (qm11

k )max are
the minimum and maximum mixing ratios in an upstream biased The Courant number condition oout c̃j , 1 implies that not
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be a # 0 to allow for the worst case inflow, which could be
b 5 0 and f 5 0. In practice, though, it is likely that the basic
scheme value for b will be greater than 0, and this information
can be used to calculate a less pessimistic worst case inflow
mixing ratio and, hence, to relax the allowed range of outflow
mixing ratios.

This suggests two refinements to the limiter. In the first
refinement the inflow bounds for each face are widened by
taking into account upstream-diagonal neighbours. For exam-
ple, the refined inflow bounds on the value a in Fig. 8 are given
by (32) and (33) with

qup
min 5 min(qC, qB) (46)

qup
max 5 max(qC, qB). (47)

(If there is inflow to box C from box D as well then qD should
also be included in the parentheses in (46) and (47). However,
it is not necessary to include qF.) For other grids, boxes in the

FIG. 7. As in Fig. 3 but for the UTOPIA scheme plus the simple form upstream neighbourhood of the face in question, in addition to
of the multidimensional limiter described in Section 4.1. the box immediately upstream, can be taken into account on a

similar way. E.g., see [14] for the case of a hexagonal grid.
The second refinement is more subtle. The inflow bounds

ensure that the mixing ratio at an inflow face, i, of a box k liesall of the fluid in a grid box may leave that grid box in one
step. It ensures that the resulting scheme is shape-preserving in the range [min(qup

min, qk), max(qup
max, qk)]. The extremes of this

range define the worst cases that the outflow bounds for boxand, therefore, stable in the sense that the global extremes of
the mixing ratio cannot be amplied. In the tests carried out, the k must cope with. However, this estimate of the worst cases

may be too pessimistic. In particular, once the basic schemescheme tends to blow up quickly if oout c̃j does become greater
than 1. interfacial value has been adjusted to lie within this range,

giving q̂0i , it can be shown that the outflow bounds for face iFigure 7 shows the results of combining this limiter (with
the simple choice qup

min 5 qup
max 5 qup) with the UTOPIA basic (face i is an outflow face for a neighbour of box k) will not

move the final interfacial value outside the range [min(qup
min,scheme and applying the resulting scheme to the test cases

of Section 2. The results confirm that the scheme is shape- q̂0i ), max(qup
max, q̂0i )]. By using this narrower worst case range

preserving, i.e., there are no overshoots or undershoots. But
for flow at an angle to the grid the advected profiles are badly
distorted, with large spreading in the direction perpendicular
to the flow.

4.2. Refining the Limiter

To understand the reason for the sideways spreading seen
using the limiter of Section 4.1 it is useful to consider the
idealized situation depicted in Fig. 8. The mixing ratio is 1 in
the shaded region in the upper left and 0 elsewhere, and the
wind is from the bottom left corner. The advected quantity
spreads rapidly towards the bottom right because the mixing
ratio in box C increases too rapidly. This, in turn, is because
there is insufficient outflow from box C to box A.

The limiter of Section 4.1 causes this in two ways. First, the
inflow bounds for box A require that 0 # a # 0, i.e., a 5 0.
Obviously this constraint should be relaxed to allow for the
fact that some fluid with higher mixing ratio can enter box C

FIG. 8. Schematic illustrating the conditions under which the simple form
from the left, i.e., box A must be given some information about of the multidimensional limiter can lead to distortion of the advected profile.
box B, which it meets only at the corner. Second, the minimum The arrows indicate the direction of the normal component of the wind at the

faces of box C; a, b, d, and f are mixing ratios at the faces of box C.allowed value of qm11
C is 0, so that the outflow bound on a must
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from which a slot of width 5 Dx has been cut, is initially centred
at grid box (50, 75). The maximum extent of the ‘‘bridge’’
joining the two halves of the cylinder is 5 Dx. The rotation
rate and time step are chosen so that the cylinder should return
to its initial position after 628 steps.

The initial and final profiles are shown in Fig. 10. The maxi-
mum and minimum values are accurately preserved, although
there is some erosion of the ‘‘bridge’’ and filling of the slot.
This solution is slightly more diffused than that presented in
[16]. This is because of the slightly diffusive nature of the
upwind biased basic scheme used here. When the FCT algo-
rithm is used with the same basic scheme the results are virtually
identical to those in Fig. 10 (not shown).

6. FLUX LIMITER FOR FLUID DENSITY

So far this paper has addressed the problem of how to time-
step the mass mixing ratio of an advected scalar, given the mass
fluxes of the fluid. The two forms of the advection equation,FIG. 9. As in Fig. 3 but for the UTOPIA scheme plus the multidimensional

limiter including the refinements of Section 4.2. (1) and (2), imply different properties of advection, namely
conservation and shape preservation, that can be obtained in a
numerical advection scheme by discretizing the flux form and
by using an appropriate flux limiter.

for the inflow to box k, wider, less restrictive, outflow bounds This section addresses the problem of how to timestep the
are obtained. Thus, one extra step is required in the algorithm: fluid density (or an anlogous quantity such as fluid depth in
after step (iii) the inflow bounds are revised: the shallow water equations), given the fluid velocity. There is

only one form of the mass continuity equation (4), so at first
it may seem that we can demand conservation of mass from a(q̂9

(in)

i )min 5 min(qup
min, q̂0i ), (48)

numerical scheme, but no analogue of the shape preservation
property. However, it is possible to imagine a nondivergent(q̂9

(in)

i )max 5 max(qup
max, q̂0i ), (49)

flow in which a scheme without a flux limiter would allow
spurious extrema to arise in the density, so in this case we canfor every face i, and the revised bounds are used in (42) and
demand an analogue of the shape preservation property and(43) in place of (q̂(in)

i )min and (q̂(in)
i )max to calculate the outflow

there is a role for a flux limiter. More generally, the idea ofbounds in step (iv).
shape preservation must be extended to apply to density inNeither of these refinements on its own relieves the grid-
divergent flows.flow angle-dependent distortion shown in Fig. 7, but when they

Equation (4) can be rewritten asare used together the resulting scheme performs well and any
remaining distortion is negligible (Fig. 9).

Dr

Dt
1 r= · v 5 0, (50)

5. SPLIT CYLINDER TEST

All of the results presented so far use a flow that is constant which implies that extrema in the density can increase or de-
in space and time to highlight the most basic behaviour of the crease and new extrema can arise, depending on the divergence.
advection schemes. One further result is presented here that Discretizing in time following a fluid parcel gives
tests the refined flux-limited scheme for a flow constant in time
but not in space. Further tests of a similar scheme under strain-

rm11 P rm(1 2 Dt= · v). (51)ing flow and a discussion of the dissipation associated with the
scheme when there are cascades to small scales are presented
elsewhere [14]. This suggests a way to place bounds on the allowed values of

density after one time step. If q is replaced by r and c̃ isThe test is the advection of a split cylinder by a solid body
rotation as used by Zalesak [16]. The domain is 100 3 100 replaced by c in (32) through (45) and the resulting values of

r̂ are substituted in (5) to step the density, the new density ingrid boxes (Dx 5 Dy) with a counterclockwise solid body
rotation centred on box (50, 50). A cylinder of radius 15 Dx, grid box k is guaranteed to lie in the range
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FIG. 10. Perspective view of the initial conditions and final solution of the split cyclinder test. Initially the mixing ratio is 3.0 in the split cylinder and
1.0 elsewhere. Only a subregion (50 boxes by 50 boxes) around the cyclinder is shown.

limiters on arbitrary grids for either compressible or incom-F(rm11
k )min S1 1 Oin

ci 2 Oout
cjD, (rm11

k )max

(52)
pressible flow. A scheme with the simplest form of the flux
limiter can distort the advected profile, depending on the
flow orientation relative to the grid, but a scheme with aS1 1 Oin

ci 2 Oout
cjDG. refined version of the limiter gives satisfactory results. The

refinements involve (i) using diagonal-upstream neighbouring
That is, the new density is bounded by the density at the previous boxes, as well as immediately adjacent upstream boxes, to
time step in some upstream neighborhood after making appro- specify the inflow bounds and (ii) using information about the
priate allowance for the divergence. ((rm11

k )min should not be basic scheme box-face mixing ratios to relax the outflow
interpreted as the minimum permitted value of r in box k at bounds. The method can be applied to the advection of a scalar
step m 1 1. It is simply the smallest value of r in some upstream such as the mass mixing ratio of a chemical constituent and
biased neighbourhood of box k at step m. Similar comments also to the mass continuity equation for the density of the
apply to (rm11

k )max.) Thus the flux limiter algorithm of Section
fluid itself.

4.1 can be applied to fluid density with only a very minor
modification. The refinements of Section 4.2 also carry over

7.2. Other Gridsin a trivial way.
This flux limiter has been applied successfully to the equation

All of the results presented in this paper use a regular squarefor fluid depth in the shallow water equations [14].
grid. The flux limiter described here has also been appliedIt is not clear how to extend this flux limiter to other quanti-
successfully on a regular hexagonal grid [14] and on a hexago-ties, like momentum, unless an analogue of the shape preserva-
nal–icosahedral grid (i.e., a grid made up of hexagons andtion property can be found. The flux limiter can be applied to
pentagons) on a sphere. The limiter of Section 4.1 and thepotential vorticity in a stratified rotating fluid because it satisfies
second refinement of Section 4.2 apply without modificationthe same advection equations as the mixing ratio of an inert
to arbitrary grids. A variation of the first refinement of Sectionscalar. Again, see [14] for an application to the shallow wa-
4.2 may be made by using appropriate upstream-sidewayster equations.
neighbours to give wider inflow bounds; the details obviously

7. SUMMARY AND DISCUSSION depend on the grid used. The first refinement appears to be
necessary on all of the grids tried to avoid distortion of the

7.1. Summary of Results advected profiles. Interestingly, the second refinement appears
to be unnecessary on a hexagonal grid, although there is noA general framework has been developed for building multi-

dimensional shape-preserving advection schemes using flux harm in retaining it.
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See Fig. 11 and compare Fig. 9. The low order scheme used
for this test was first-order upwind (donor cell).

The cost of the new flux limiter appears to be similar to the
cost of FCT. For example, the split cylinder test required 944 s
of CPU for the basic scheme with no flux limiter, 1481 s for
the new flux-limited scheme, and 1394 s for the basic scheme
with FCT. It is also worth noting that the code for the new flux
limiter can be written so as to ‘‘vectorize’’ on computers with
a pipeline architecture.

The algorithm presented here puts single stage flux-limited
schemes on a par with two-stage FCT schemes in terms of
flexibility, allowing the construction of genuinely multidimen-
sional schemes for compressible and incompressible flow on
arbitrary grids. The performance of the flux-limited and FCT
schemes compares well in the tests presented here. Flux-lim-
iting now appears to be a viable alternative to FCT for building
multidimensional, conservative, shape-preserving advection
schemes.

FIG. 11. As in Fig. 3 but for the UTOPIA scheme modified using the ACKNOWLEDGMENTS
multidimensional FCT algorithm.
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